дебаевский - traduction vers Anglais
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

дебаевский - traduction vers Anglais

Радиус Дебая; Дебаевский радиус; Длина Дебая; Дебаевский радиус экранирования; Экранировка Дебая; Экранирование поля заряда; Радиус Дебая — Хюккеля

дебаевский      
adj.
Debye; дебаевская температура, Debye temperature; дебаевское приближение, Debye approximation
Debye temperature         
  • The physical result of two waves can be identical when at least one of them has a wavelength that is bigger than twice the initial distance between the masses (taken from [[Nyquist–Shannon sampling theorem]]).
METHOD IN PHYSICS
Debye temperature; Debye Approximation; Debye approximation; Debye Model; Debye Temperature; Debye frequency; Debye Frequency; Debye Theory; Debye theory of specific heat capacities; Debye T3 law; Debye's theory of heat capacity; Debye's T3 law

общая лексика

дебаевская температура

Debye approximation         
  • The physical result of two waves can be identical when at least one of them has a wavelength that is bigger than twice the initial distance between the masses (taken from [[Nyquist–Shannon sampling theorem]]).
METHOD IN PHYSICS
Debye temperature; Debye Approximation; Debye approximation; Debye Model; Debye Temperature; Debye frequency; Debye Frequency; Debye Theory; Debye theory of specific heat capacities; Debye T3 law; Debye's theory of heat capacity; Debye's T3 law

общая лексика

дебаевское приближение

Définition

Дебаевский радиус экранирования

расстояние, на которое распространяется в плазме или электролите действие электрического поля отдельного заряда. Эта величина была впервые введена П. Дебаем (См. Дебай) при исследовании явлений электролиза.

Если источник электрического поля, например заряженная частица, окружен средой, содержащей положительные и отрицательные заряды, то вследствие поляризации среды электрическое поле источника становится очень малым (экранируется) на расстояниях, превышающих Д. р. э. Величина Д. р. э. зависит от свойств среды: от концентрации заряженных частиц, от их заряда и от энергии их теплового движения, т. е. от температуры. Например, в плазме ионизованного водорода при концентрации 1016 см-3 и температуре 106 К Д. р. э. равен 5-10-5 см. См. также Плазма.

Wikipédia

Дебаевская длина

Деба́евская длина (дебаевский радиус) — расстояние, на которое распространяется действие электрического поля отдельного заряда в квазинейтральной среде, содержащей свободные положительно и отрицательно заряженные частицы (плазма, электролиты). Вне сферы радиуса дебаевской длины электрическое поле экранируется в результате поляризации окружающей среды (поэтому это явление ещё называют экранировкой Дебая).

Дебаевская длина определяется формулой

λ D = { j 4 π q j 2 n j ε r k T j } 1 / 2 {\displaystyle \lambda _{\text{D}}=\left\{\sum _{j}{\frac {4\pi q_{j}^{2}n_{j}}{\varepsilon _{r}kT_{j}}}\right\}^{-1/2}} (СГС),
λ D = { j q j 2 n j ε 0 ε r k T j } 1 / 2 {\displaystyle \lambda _{\text{D}}=\left\{\sum _{j}{\frac {q_{j}^{2}n_{j}}{\varepsilon _{0}\varepsilon _{r}kT_{j}}}\right\}^{-1/2}} (СИ),

где q j {\displaystyle q_{j}}  — электрический заряд, n j {\displaystyle n_{j}}  — концентрация частиц, T j {\displaystyle T_{j}}  — температура частиц типа j {\displaystyle j} , k {\displaystyle k}  — постоянная Больцмана, ε 0 {\displaystyle \varepsilon _{0}}  — диэлектрическая проницаемость вакуума, ε r {\displaystyle \varepsilon _{r}} — диэлектрическая проницаемость. Суммирование идёт по всем сортам частиц, при этом должно выполняться условие нейтральности j q j n j = 0 {\displaystyle \sum _{j}q_{j}n_{j}=0} . Важным параметром среды является число частиц в сфере радиуса дебаевской длины:

n D = 4 π 3 λ D 3 j n j . {\displaystyle n_{\text{D}}={\frac {4\pi }{3}}\lambda _{\text{D}}^{3}\sum _{j}n_{j}.}

Оно характеризует отношение средней кинетической энергии частиц к средней энергии их кулоновского взаимодействия:

n D ( E kinetic / E coulomb ) 3 / 2 . {\displaystyle n_{\text{D}}\thicksim (E_{\text{kinetic}}/E_{\text{coulomb}})^{3/2}.}

Для электролитов это число мало́ ( n D 10 4 {\displaystyle n_{D}\thicksim 10^{-4}} ). Для плазмы, находящейся в самых различных физических условиях, — велико. Это позволяет использовать методы физической кинетики для описания плазмы.

Понятие дебаевской длины введено Петером Дебаем в связи с изучением явлений электролиза.

Traduction de &#39дебаевский&#39 en Anglais